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ABSTRACT

Convection-allowing models offer forecasters unique insight into convective hazards relative to numerical

models using parameterized convection. However, methods to best characterize the uncertainty of guidance

derived from convection-allowing models are still unrefined. This paper proposes a method of deriving

calibrated probabilistic forecasts of rare events from deterministic forecasts by fitting a parametric kernel

density function to the model’s historical spatial error characteristics. This kernel density function is then

applied to individual forecast fields to produce probabilistic forecasts.

1. Introduction

Rare meteorological events1 that occur on small spa-

tial and short temporal scales pose significant challenges

to forecasters. This is related to the limited predictability

of phenomena occurring on short time–space scales.

However, these events compose a substantial portion

of meteorological phenomena that negatively impact

society, such as heavy rain, large hail, and tornadoes.

Thus, accurate numerical guidance of these events

would provide large societal benefits.

Convection-allowing models (CAMs) have shown

improved skill, compared to parameterized convection

models, in identifying regions where rare meteorological

events associated with convection (hereafter rare con-

vective events, RCEs) may occur (Clark et al. 2010b).

Furthermore, CAMs are able to do this by explicitly

representing deep-convective storms and their unique

attributes—not just storm environments (Kain et al.

2010). Yet, quantifying the uncertainty associated with

explicit numerical predictions of RCEs is particularly

challenging (Sobash et al. 2011). Of course, ensembles

are powerful tools for quantifying uncertainty, but when

convection-allowing ensemble prediction systems are

used to provide guidance for forecasting storm attributes,

they are subject to the same fundamental limitation that

Corresponding author address: Patrick T. Marsh, National Se-

vere Storms Laboratory, 120 David L. Boren Blvd., Norman, OK

73072.

E-mail: patrick.marsh@noaa.gov

1 Murphy (1991) defined a rare meteorological event as one that

occurs on less than 5% of forecasting occasions.

APRIL 2012 M A R S H E T A L . 531

DOI: 10.1175/WAF-D-11-00074.1



handicaps single-member CAM forecast systems: too

little is known about the performance characteristics of

CAMs in predicting RCEs explicitly.

There are three main reasons for this deficiency. First,

routine, explicit, contiguous, or near-contiguous, United

States (CONUS or near-CONUS) scale forecasts of

RCEs have been available for only 6–7 yr in the United

States, so there is still much to learn about which phe-

nomena can be skillfully predicted with CAMs (Kain

et al. 2008, 2010). Second, most real-time forecasting

efforts with CAMs have been short-term initiatives, fo-

cusing on specific tasks (e.g., Done et al. 2004; Weisman

et al. 2008). Third, there is a limited database of fore-

casts for RCEs, making robust statistical techniques

difficult (e.g., Hamill and Whitaker 2006). In short, there

is a limited track record of the use of CAMs as guidance

for prediction of RCEs.

This paper presents a strategy for calibrating, or quan-

tifying the uncertainty of, forecasts of RCEs based on the

idea of generating probabilistic forecasts from a single

underlying deterministic model. It uses a conceptual ap-

proach similar to that described by Theis et al. (2005) and

refined by Sobash et al. (2011). As in those two studies,

this strategy differs from other methods for both de-

terministic models (e.g., Glahn and Lowry 1972) and

ensemble modeling systems (e.g., Hamill and Colucci

1998; Raftery et al. 2005; Clark et al. 2009; Glahn et al.

2009) by including a neighborhood around each model

grid point as a fundamental component of the calibration

process.

The strategy is loosely based on kernel density esti-

mation (KDE), which can be used to retrieve spatial

probability distributions from point observations or, in

this case, forecasts. In other words, if a model forecasts

an event at point A, KDE can be utilized to gain insight

into the probability that the event might occur at a

nearby point. This is achieved by utilizing a statistical

distribution to redistribute a total of 100% probability

over multiple (typically nearby) grid points. The result

is a probability forecast, the character of which is de-

termined by one’s choice of statistical distribution and

the number of grid points over which this distribu-

tion is applied. The smoothing effect is similar to that

obtained with ensemble output by Wilks (2002), but

calibration efforts herein focus on output from a single

deterministic model. Sobash et al. (2011) demonstrated

with a two-dimensional, isotropic Gaussian function

that calibration of the probability forecasts derived

using this technique is most easily done by changing the

number of grid points over which nonzero probabilities

are distributed. In this study, however, an objective

calibration method, based on past model performance,

is presented.

The method is presented in following sections of this

paper. Section 2 describes the datasets used to develop

and test the approach. Section 3 describes how the method

is applied and section 4 provides initial results. The paper

concludes with a brief summary and discussion.

2. Data

Model forecasts and observations of precipitation

were obtained for the 48-month time period 1 April

2007–31 March 2011 and subdivided into two classifi-

cations: training and verification. Forecasts and obser-

vations during the time period 1 April 2007–31 March

2010 (36 months) were used in the training dataset and

the remaining 12 months were used to test and verify the

proposed method.

Model forecasts were taken from the 4-km grid-length

Weather Research and Forecasting Model (WRF) con-

figuration (Skamarock et al. 2008) run daily at the Na-

tional Oceanic and Atmospheric Administration/National

Severe Storms Laboratory (NOAA/NSSL). The NSSL

produces numerical weather prediction forecasts from the

WRF as part of an ongoing collaborative effort with the

NOAA/Storm Prediction Center (SPC). Model forecasts

are produced daily out to 36 h, using 0000 UTC initial

and lateral boundary conditions from the operational

North American Mesoscale Model (Rogers et al. 2009),

over a CONUS domain. Information on the configuration

is provided in Kain et al. (2010). (Images of output from

the WRF forecasts generated at the NSSL, hereafter

NSSLWRF, can be found online at http://www.nssl.noaa.

gov/wrf.)

Observations were taken from the NOAA/National

Centers for Environmental Prediction (NCEP) stage IV

national quantitative precipitation estimate analyses.

The stage IV analyses are based on the multisensor

hourly–6-hourly ‘‘stage III’’ analyses (on local 4.7-km

polar-stereographic grids) produced by the 12 River

Forecast Centers in the CONUS. NCEP mosaics the

stage III into a national product (the stage IV analyses)

available at hourly, 6-hourly, and 24-hourly (accumu-

lated from the 6-hourly) intervals. Lin and Mitchell

(2005) describe further details of these analyses. (Ar-

chives of the stage IV dataset can be found online at

http://data.eol.ucar.edu/codiac/dss/id521.093.)

Diagnostic analyses were conducted on the stage IV

grid, requiring interpolation of the NSSLWRF output.

The program copygb (http://www.cpc.ncep.noaa.gov/

products/wesley/copygb.html) was used for the in-

terpolation and domain-wide total liquid volume was

conserved. Six-hour accumulation periods were used,

taken from the 12–36-h forecasts ending at 1800, 0000,

0600, and 1200 UTC. A mask was applied to both the

532 W E A T H E R A N D F O R E C A S T I N G VOLUME 27



NSSLWRF forecasts and stage IV observations to limit

the region studied to CONUS and near-CONUS areas

east of the Rocky Mountains (Fig. 1).

3. Proposed method

The method proposed in this study goes beyond Theis

et al. (2005) and Sobash et al. (2011) by employing

a compositing technique for calibration of forecast prob-

abilities. The technique determines the two-dimensional

spatial histogram of observations of a phenomenon rela-

tive to forecasts of the same phenomenon. Once this his-

togram is ascertained, a two-dimensional analytic function

can be fitted to it. In this approach, the fitted statistical

distribution determines the character of the probability

forecasts and corrects for systematic displacement errors.

Several analytical distributions might be good candidates

for this purpose, but a two-dimensional Gaussian func-

tion is applied here, fitted using methods similar to those

in Lakshmanan and Kain (2010).

For this study, the rare convective event of choice was

defined to be 6-h precipitation accumulation of greater

than or equal to 25.4 mm, which occurred on less than

approximately 0.5% of all stage IV and NSSLWRF grid

points in the training dataset. The NSSLWRF and stage

IV training datasets were converted from forecasts and

observations of precipitation amounts into binary grids

of ones (RCE criteria was met) and zeros (RCE criteria

was not met). Next, a two-dimensional frequency dis-

tribution, representing the location of stage IV RCEs

occurring within 400 km (85 grid points) relative to

corresponding forecasts of RCEs by the NSSLWRF,

was created using the compositing technique described

by Clark et al. (2010a). The two-dimensional, anisotropic

Gaussian function was then fitted to the distribution. For

this function, the parameters necessary to describe the

distribution are the area under the Gaussian curve, the

center of the fitted distribution relative to the forecast

point (h, k), the standard deviation in the x direction (sx),

the standard deviation in the y direction (sy), and the

rotation angle of the x axis (xrot).

4. Results

The frequency distribution of the locations of the

observed events relative to the forecast events for the

training period (1 April 2007–31 March 2010) is shown

in Fig. 2. It is clear from Fig. 2 that the maximum ob-

served frequency is observed to the north-northeast of

the forecast location and the observed distribution has

an elliptical shape. When the anisotropic Gaussian

function is fitted to this distribution, the resulting pa-

rameters, determined using the methods described in

Lakshmanan and Kain (2010), are (h, k) 5 (4.7, 23.5) km,

indicating that the NSSLWRF forecasts were, on aver-

age, approximately 4.7 km too far west and 23.5 km too

far south, and sx ’ 180 km, sy ’ 160 km, and xrot ’ 608

in the counterclockwise direction, revealing the anisot-

ropy of the distribution. To some extent, the shape and

anisotropy are closely related to the mean shape and

orientation of individual precipitation objects, as re-

vealed by comparing the average size-weighted orien-

tation of the precipitation objects, determined by the

Baldwin object identification algorithm (Baldwin et al.

2005), to the orientation angle of the fitted distribution

(not shown).

Using this fitted functional distribution, probabilistic

forecasts for each 6-h time period from 1 April 2010 to

31 March 2011 were generated in a manner similar to what

was done by Sobash et al. (2011), except that the shifted,

fitted anisotropic distribution was used instead of the

simple isotropic Gaussian used by Sobash et al. (2011).

In essence, the fitted distribution was applied to every

grid point exceeding 25.4 mm in 6 h, and the resulting

individual distributions were then linearly combined to

create the forecast probability. Four sample forecasts

(all of differing lead times) are shown in Figs. 3 and 4 and

are now discussed. However, one must be cautious about

assessing the skill of a probabilistic forecasting system

on the basis of individual events.

Figures 3a, 3c, and 3e depict observations and model

forecasts of precipitation for the 6 h ending at 1800 UTC

2 May 2010 (a 12–18-h forecast). During this 6-h period,

heavy rain fell over an elongated area stretching from

central Mississippi north-northeastward into southeast-

ern Ohio and western West Virginia, with an area ex-

ceeding 200 mm in north-central Tennessee (Fig. 3a).

South and east of this axis of heaviest rainfall, areas in

eastern Mississippi had precipitation totals around the

25.4-mm threshold. The NSSLWRF forecast of this event

was generally good, cluing forecasters on the general area

of concern. However, the NSSLWRF forecast had three

FIG. 1. The subset of the stage IV grid used in the analysis (shaded).
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distinct areas of heavy rain compared to the single large

band that was observed: one northwest of the observed

axis of heavy rain, one southeast, and one along the

northeastern most observed area exceeding 25.4 mm

(Fig. 3c). Applying the proposed probabilistic method

resulted in the area of highest probabilities of reaching

or exceeding 25.4 mm (between 25% and 30%) occurring

very near the area of maximum rainfall (Fig. 3e). Addi-

tionally, the axis of highest probabilities extending

northeast of the maximum probabilities aligned very

well with the observed area equal to or exceeding

25.4 mm. The axis of highest probabilities also extends

to the south and southwest of the maximum forecast

probabilities, capturing the southwestward extent of the

observed heavy rain, and at the same time highlighting

areas in eastern Mississippi (Fig. 3e).

Figures 3b, 3d, and 3f depict observations and model

forecasts of precipitation for the 6 h ending at 0000 UTC

27 September 2010 (an 18–24-h forecast). Observations

depict a large area of precipitation greater than or equal

to 25.4 mm stretching from southeastern Alabama

northeastward into far northwestern South Carolina with

scattered areas reaching this threshold across southern

Mississippi and eastern North and South Carolina (Fig.

3b). The NSSLWRF forecast of this event depicted two

areas exceeding 25.4 mm of precipitation, essentially

capturing both observed areas (cf. Figs. 3b and 3d). The

corridor of observations greater than 25.4 mm is gen-

erally contained within 5%–10% probabilities (Fig. 3f).

In this case, much of the area covered by the highest

probabilities of 15%–20% did not receive heavy rain-

fall during this period.

A 24–30-h forecast and observations of precipitation

for the 6 h ending at 0600 UTC 6 June 2010 are pre-

sented in Figs. 4a, 4c, and 4e. Observations depict two

areas over Michigan that reach the 25.4-mm threshold.

The first extends from the southeastern portion of Lake

Michigan eastward to the western portions of Lake Erie.

The second area extends from the northern portion of

Lake Michigan eastward to the western portions of

Lake Huron. A third area reaching the 25.4-mm thresh-

old is found across Illinois and stretches into Indiana

(Fig. 4a). Although slightly farther west, the NSSLWRF

deterministic forecast does a reasonable job depicting the

FIG. 2. The two-dimensional, frequency distribution of stage IV observations . 25.4 mm

relative to NSSLWRF forecasts of the same events for the training dataset (1 Apr 2007–31 Mar

2010). The representative NSSLWRF forecast grid point is marked by a white dot in the middle

of the domain and the stage IV observation frequency is color filled. To illustrate the dis-

placement between forecasts and observations, the center of the fitted two-dimensional, an-

isotropic Gaussian is denoted by the black dot.
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general location of the heaviest precipitation across Illi-

nois and southern Michigan. However, it underpredicts

the heavy precipitation across northern Michigan (Fig. 4c).

The probabilistic forecast derived from the NSSLWRF

captures most, if not all, observed areas that reached

the 25.4-mm threshold with a probability of at least 5%—

including the area across northern Michigan that was not

explicitly forecast to exceed 25.4 mm by the deterministic

forecast. Furthermore, the highest probabilities are

located in southwestern Michigan (30%–35%), conjoined

with the western portion of the southern Michigan heavy-

rain axis (Fig. 4e).

A 30–36-h forecast and observations of precipitation

for the 6 h ending at 1200 UTC 30 September 2010 are

presented in Figs. 4b, 4d, and 4f. Observations depict

a large area exceeding the 25.4-mm threshold extending

from eastern South Carolina northward into far south-

eastern New York (Fig. 4b). Additionally, a small region

of precipitation reaching the 25.4-mm threshold is found

across northeastern Georgia. The NSSLWRF deterministic

FIG. 3. Example forecasts and observations from two separate days and differing forecast lengths. The forecasts

and observations for the 6 h ending at (a),(c),(e) 1800 UTC 2 May 2010 (12–18-h forecast) and (b),(d),(f)

0000 UTC 27 Sep 2010 (18–24-h forecast). (a),(b) The stage IV 6-h quantitative precipitation estimates (QPEs),

(c),(d) the 6-h NSSLWRF 6-h quantitative precipitation forecasts (QPFs), and (e),(f) the stage IV QPEs . 25.4 mm

contoured on top of the NSSLWRF probability of exceeding 25.4 mm in 6 h. The minimum shaded probability is

0.001 (0.1%).
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forecast is slightly narrower and farther east with its

forecast, misplacing the axis of heaviest precipitation

across North Carolina and Virginia (Fig. 4d). However,

the NSSLWRF-generated probabilities encompass the

area exceeding the 25.4-mm threshold, with the maxi-

mum probabilities of 40%–45% near Washington D.C.

(Fig. 4f). The NSSLWRF deterministic forecast com-

pletely missed the heavy precipitation across northeast-

ern Georgia, and this area is sufficiently far from the area

to the east that it falls outside the 0.1% contour of the

probabilistic forecast.

These examples are illuminating but many events are

required to assess the skill of probabilistic forecast

systems. A more objective verification is provided here

by applying well-known verification metrics to the entire

12 months’ worth of forecasts generated in this manner.

First, a relative operating characteristic (ROC) curve

(Mason 1982) is computed from all of the forecasts and

observations (Fig. 5a). The resulting curve yields an area

under the curve (AUC) of 0.94, indicating that the

probabilistic forecasts have considerable skill in dis-

criminating between events and nonevents. To visualize

the reliability of the generated probabilistic forecasts,

a reliability diagram was constructed (Fig. 5b). The re-

sulting diagram indicates that the forecasts are quite

reliable over a broad range of probabilities.

FIG. 4. As in Fig. 3, but here for the forecasts and observations for the 6 h ending at (a),(c),(e) 0600 UTC 6 Jun

2010 (24–30-h forecast) and (b),(d),(f) 1200 UTC 30 Sep 2010 (30–36-h forecast).
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5. Discussion

This paper offers a method of objectively generating

calibrated probabilistic forecasts of RCEs from a de-

terministic model. This is achieved by computing a two-

dimensional frequency distribution of observed event

locations relative to the forecast event location. This

frequency distribution is then used to determine the

necessary parameters of an analytical function, which, in

turn, can be used to convert a deterministic (1/0) forecast

into a probabilistic forecast. As a proof of concept, this

study uses a training dataset containing 36 months’

worth of high-resolution output from the real-time

NSSLWRF model and a verification dataset consisting

of 12 months of forecasts from the same modeling sys-

tem. Early results demonstrate this technique has the

potential to produce very skillful probabilistic forecasts.

The technique is successful because it objectively rep-

resents the spatial uncertainty associated with the un-

derlying deterministic forecast system. Preliminary

assessments suggest that this uncertainty varies sys-

tematically as a function of numerous factors, such as

forecast lead time, geographic location, meteorological

season and regime, etc. Further refinements to the

technique could include dependencies on these factors.

For example, since cool-season precipitation forecasts

tend to be more accurate than those for the warm sea-

son, Gaussian fits to the position-error fields could vary

as a function of season, with sharper, higher-amplitude

distributions in the cool season and broader, lower-

amplitude distributions in the warm season.

This technique could also be used to improve proba-

bilistic forecasts from ensemble prediction systems. Well-

crafted ensemble prediction systems are likely to be more

effective at sampling the range and character of possible

solutions and yielding skillful probabilistic forecasts than

a KDE-based approach that uses a single underlying

deterministic model. But the two approaches are com-

plementary. For example, consider that Wilks (2002)

showed that smoothing of ensemble-generated proba-

bilities tends to improve the forecast skill of the ensem-

ble, much like adding additional members. We propose

that this impact could be enhanced and better targeted if

smoothing parameters were based on the historical per-

formance characteristics of the individual members of the

ensemble. This strategy is currently being investigated

by the authors. This method relies heavily on accurate

observations of the phenomenon being predicted. This

poses significant limitations when attempting to apply this

technique to other RCEs, including, but not limited to,

FIG. 5. (a) The ROC curve and (b) reliability diagram with corresponding forecast counts, both computed over the 1 Apr 2010–31 Mar

2011 time period. On the ROC curve, AUC 5 0.94 and the line of no skill (diagonal, dashed) are also plotted. The reliability component of

the Brier Score [REL 5 1.3898 3 1025; Murphy (1973)], line of perfect reliability (diagonal, dashed), and line of no skill (dot–dash line)

are also plotted in the reliability diagram. The climatology line is plotted, but because it is ,0.005 it cannot be distinguished from the x axis.

The forecast counts associated with the reliability diagram are plotted on a log scale below the reliability diagram.
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damaging localized wind gusts, large hail, and tornadoes.

This is due to the lack of quality observations of these

phenomena, not to mention the inability of operational

numerical models to predict these phenomena explicitly.

Numerical guidance of severe thunderstorms has improved

in recent years with the advent of convection-allowing

models and high temporal resolution storm-attribute pa-

rameters [e.g., updraft helicity, downdraft intensity, graupel

loading, etc; Kain et al. (2010)]; however, corresponding

observational datasets with spatial and temporal co-

herences comparable to the model data are not available.

It is our hope that as robust observational datasets of

radar-derived convective fields become readily available,

calibration of KDE-based approaches utilizing historical

model performance will become more viable. One such

application is the generation of probabilistic hazard in-

formation of rare convective events in a warn-on-forecast

(Stensrud et al. 2009) type environment.
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